Package: FACT 0.1.1
FACT: Feature Attributions for ClusTering
We present 'FACT' (Feature Attributions for ClusTering), a framework for unsupervised interpretation methods that can be used with an arbitrary clustering algorithm. The package is capable of re-assigning instances to clusters (algorithm agnostic), preserves the integrity of the data and does not introduce additional models. 'FACT' is inspired by the principles of model-agnostic interpretation in supervised learning. Therefore, some of the methods presented are based on 'iml', a R Package for Interpretable Machine Learning by Christoph Molnar, Giuseppe Casalicchio, and Bernd Bischl (2018) <doi:10.21105/joss.00786>.
Authors:
FACT_0.1.1.tar.gz
FACT_0.1.1.zip(r-4.5)FACT_0.1.1.zip(r-4.4)FACT_0.1.1.zip(r-4.3)
FACT_0.1.1.tgz(r-4.4-any)FACT_0.1.1.tgz(r-4.3-any)
FACT_0.1.1.tar.gz(r-4.5-noble)FACT_0.1.1.tar.gz(r-4.4-noble)
FACT_0.1.1.tgz(r-4.4-emscripten)FACT_0.1.1.tgz(r-4.3-emscripten)
FACT.pdf |FACT.html✨
FACT/json (API)
NEWS
# Install 'FACT' in R: |
install.packages('FACT', repos = c('https://henrifnk.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/henrifnk/fact/issues
Last updated 8 months agofrom:80719b8721. Checks:OK: 5 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 20 2024 |
R-4.5-win | NOTE | Nov 20 2024 |
R-4.5-linux | NOTE | Nov 20 2024 |
R-4.4-win | OK | Nov 20 2024 |
R-4.4-mac | OK | Nov 20 2024 |
R-4.3-win | OK | Nov 20 2024 |
R-4.3-mac | OK | Nov 20 2024 |
Exports:ClustPredictorIDEASMART
Dependencies:backportscheckmateclicodetoolscolorspacedata.tabledigestfansifarverFormulafuturefuture.applyggplot2globalsgluegridExtragtableimlisobandlabelinglatticelifecyclelistenvmagrittrMASSMatrixMetricsmgcvmunsellnlmeparallellypillarpkgconfigR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Clustering Predictor Object | ClustPredictor |
Create a generic prediction function | create_predict_fun create_predict_fun.Learner |
Evaluate Class | calculate_confusion evaluate_class |
Idea - Isolated Effect on Assignment | IDEA |
'SMART' - Scoring Metric after Permutation | SMART |